microblx Documentation

Markus Klotzbuecher et al

Jan 20, 2023

Contents:

Installing 1
[.1 Building from source oL e e e e e e e e e e e e e 1
1.2 USIN@ YOCLO .« . v o v v e 2
Getting started 3
2.1 Microblx inanutshell e 3
2.2 Runthethresholdexample e 4
2.3 Runthe PID controllerblock 5
24 Important CoNCEPLS . . . v v v v v v v vt e e e e e e e e e e e e e e e e e 6
Developing microblx blocks 7
3.1 OVEIVIEW . . v ot i it e e e e e e e e 7
3.2 Declaring configuration e e e e e e e 7
3.3 Declarin@ Ports e 8
3.4 Declaring block meta-data L e e e e e e e e e 9
3.5 Declaring/implementing block hook functions 0 0., 9
3.6 Declaringtheblock L e 12
3.7 Declaring types e e e e e e e e 12
3.8 Block and type registration i e e e e e e e e e e e e e e e e 13
3.9 Real-time logging L e e e e e e e 14
3.10 SPDX License Identifiers o o e e e e e e 14
3.11 Generating blocks withubx_genblock oo o 15
3.12 Block Interface Guidelines L e e 16
Composing microblx systems 17
4.1 Microblx System Composition DSL (uscfiles) 17
4.2 Hierarchical COMpOSItIONS o o vt i e e e e e e e e 20
43 Model MiXins oo e e e e e e e e e e e e 21
4.4 AIernativeso e e e e e e e e e e e e 21
Tutorial: close loop control of a robotic platform 23
5.0 Goal ... 23
5.2 Introductory StEPS . . v v o o e 23
53 Codeoftheblocks e 25
5.4 Deployment via the usc (microblx system composition) file 29
5.5 Deployment via C programttt i e e e e e e e e e e 31
5.6 Theprogram o e e e e e 32

8

57 NEXUSIEPS .« v v o v e
Frequently asked questions

6.1 Developingblocks e
6.2 Running microblX L e e e e e e e e e
6.3 Debugg@ing e e e e e e e e e e e e
6.4 meta-microblX e e
Microblx Module Index

7.1 Moduletrig o e e e e e e e e e e e
7.2 Module ptrig o e e e e e e e e e e e e
7.3 Module math _double e e
7.4 Modulerand_double e e e e
7.5 Moduleramp_double L e e e e e e e e e e e
7.6 Modulepid e e e e e e
7.7 Module saturation_double oL L L e e
7.8 Module luablock e e e e e e e e
7.9 Modulecconsto e e e e e e e e e e e e
710 Module iConSt . . . o v v v e
7.11 Module Ifds_cyclic o o o e e e e e e e e e e e
7.12 Module mqueue e e e e e e e e e e e
7.13 Module hexdump

Indices and tables

37
37
38
39
40

41
41
42
42
43
43
44
45
45
46
46
46
47
47

49

CHAPTER 1

Installing

1.1 Building from source

1.1.1 Dependencies

Make sure to install the following dependencies
e uthash (apt: uthash-dev)
* autotools etc. (apt: automake, libtool, pkg-config, make)
¢ luajit (>=v2.0.0) (apt: luajit and 1ibluajit-5.1-dev)
* Ifs: lua-filesystem (apt: lua-filesystem)
The following must be installed from source (see instructions below):
e uutils Lua utilities uutils git
e 1iblfds lock free data structures (v6.1.1) liblfds6.1.1 git
Optionally, to run the tests:

e lua-unit (apt: lua—unit, git) (to run the tests)

1.1.2 Building

Before building microblx, liblfds611 needs to be built and installed. There is a set of patches in the microblx repository
to clean up the packaging of liblfds. Follow the instructions below:

Clone the code:

$ git clone https://github.com/liblfds/liblfds6.1.1.git
$ git clone https://github.com/kmarkus/microblx.git
$ git clone https://github.com/kmarkus/uutils.git

First build lfds-6.1.1:

https://github.com/kmarkus/uutils
https://github.com/liblfds/liblfds6.1.1
https://github.com/bluebird75/luaunit

microblx Documentation

cd liblfds6.1.1

git am ../microblx/liblfds/«.patch
./bootstrap

./configure

make

v W v W

sudo make install

Then install uutils:

$ cd ../uutils
$ sudo make install

Now build microblx:

$ cd ../microblx

$./bootstrap

$./configure

$ make

$ sudo make install

Note: it might be necessary to build with

’$ make CXXFLAGS="-std=c++11"

1.2 Using yocto

If you are developing for an embedded system, the recommended way is use the meta-microblx yocto layer. Please
see the README in that repository for further instructions.

2 Chapter 1. Installing

https://github.com/kmarkus/meta-microblx

CHAPTER 2

Getting started

2.1 Microblx in a nutshell

Microblx is a lightweight framework to build function block based systems. It is designed around a canonical com-
ponent model with ports for data exchange, configs for configuration and a state machine for the “block”™ life cycle.
Trigger blocks orchestrate the execution of the components functionality.

Building a microblx application typically involves two steps:

2.1.1 Implement the required blocks

define the block API
* configs: what is (statically) configurable
 ports: which data flows in and out of the block

and implement the required block hooks
» For example, init is typically used to initialize, allocate memory and/or validate configuration.
* the step hook implements the “main” functionality and is executed when the block is triggered.
e cleanupisto “undo” init (i.e. free resources etc.)

Take a look at a simple threshold checking demo block.

Note: You can examine a block interface using ubx-modinfo, e.g. run $§ ubx-modinfo show threshold.

2.1.2 Define the application using a usc file

This involves specifying

e which block instances to create

https://github.com/kmarkus/microblx/blob/dev/std_blocks/examples/threshold.c

microblx Documentation

e the configuration of for each block

* the connections to create between ports

* the rriggering of blocks (i.e. the schedule of when to trigger the step functions of each block)
A small, ready to run usc demo using the threshold block is available here

usc applications can be launched using the ubx-launch tool, as shown in the following example.

2.2 Run the threshold example

In this small example, a ramp feeds a sine generator whose output is checked whether it exceeds a threshold. The
threshold block outputs the current state (1: above or 0: below) as well as events upon passing the threshold. The
events are connected to a mqueue block, where they can be logged using the ubx-mq tool. The actual composition
looks as follows

e \ /e \ VAR
| ramp |--->| sin |--->|thres|-——>| mqg |
\—————= / \————= / \=———= / \————/
e \
......... | trig |.......
\—————= /

—-——> depicts data flow
...> means "triggers"

Before launching, start a ubx logger client in a separate terminal:

$ ubx-log
waiting for rtlog.logshm to appear

Note: The following assumes microblx was installed in the default locations under /usr/local/. If you installed
it in a different location you will need to adapt the path.

Then in a new terminal:

$ ubx—-launch -loglevel 7 -c /usr/local/share/ubx/examples/usc/threshold.usc
core_prefix: /usr/local
prefixes: /usr, /usr/local

We increase the loglevel to 7 (DEBUG) so that debug messages will be visible. In the log window you should now see
“threshold passed” messages.

As the events output by the thres block are made available via a mqueue, these can easily be dumped to stdout
using ubx-mq:

$ ubx-mg read threshold_events -p threshold
{ts={nsec=135724534,sec=287814},dir=1}
{ts={nsec=321029297, sec=287814},dir=0}
{ts={nsec=448964856,sec=287815},dir=1}

To stop the application again, just type Ct r1—c in the ubx—1auch window.

4 Chapter 2. Getting started

https://github.com/kmarkus/microblx/blob/dev/examples/usc/threshold.usc

microblx Documentation

2.3 Run the PID controller block

This more complex example demonstrates how multiple, modular usc files can be composed into an application and
how configuration can be overlayed. The use-case is a robot controller composition which shall be used in a test mode
(extra mqueue ouputs, no real-time priorities) and in regular mode (real-time priorities, no debug outputs).

Before launching, run ubx—1o0g as above to see potential errors.

Then:

$ cd /usr/local/share/ubx/examples/usc/pid/

$ ubx-launch -webif -c pid_test.usc,ptrig_nrt.usc
merging ptrig_nrt.usc into pid_test.usc

core_prefix: /usr/local

prefixes: /usr, /usr/local

starting up webinterface block (http://localhost:8888)
loaded request_handler ()

The ubx-log window will show a number messages from the instantiation of the application. The last lines will be
about the blocks that were started.

2.3.1 Use the webif block

The cmdline arg ~webi f instructed ubx—1aunch to create a web interface block. This block is useful for debugging
and introspecting the application. Browser to http://localhost:8888 and explore:

1. clicking on the node graph will show the connections
2. clicking on blocks will show their interface

3. startthe file_logl block to enable logging

4

. start the pt rigl block to start the system.

2.3.2 Examining data-flow

The pid_test.usc creates several mqueue blocks in order to export internal signals for debugging. They can be
accessed using the ubx—mq tool:

$ ubx-mg list

243b40de92698defa93ald45acelblod2 1 trig_l-tstats
e8cd7da078a86726031ad64£f35f5a6c0 10 ramp_des-out
e8cd7da078a86726031ad64f35f5a6c0 10 ramp_msr-out
e8cd7da078a86726031ad64f35f5a6c0 10 controller_pid-out

For example to print the controller_pid-out signal:

ubx-mg read controller_pid-out
{1775781.9200001,1775781.9200001,1775781.9200001,1775781.9200001,1775781.9200001,
—1775781.9200001,1775781.9200001,1775781.9200001,1775781.9200001,1775781.9200001}
{1776377.9200001,1776377.9200001,1776377.9200001,1776377.9200001,1776377.9200001,
—1776377.9200001,1776377.9200001,1776377.9200001,1776377.9200001,1776377.9200001}
{1776974.0200001,1776974.0200001,1776974.0200001,1776974.0200001,1776974.0200001,
—1776974.0200001,1776974.0200001,1776974.0200001,1776974.0200001,1776974.0200001}
{1777570.2200001,1777570.2200001,1777570.2200001,1777570.2200001,1777570.2200001,
—1777570.2200001,1777570.2200001,1777570.2200001,1777570.2200001,1777570.2200001}

2.3. Run the PID controller block 5

http://localhost:8888

microblx Documentation

2.4

Important concepts

The following concepts are important to know:

modules are shared libraries that contain blocks or custom types and are loaded when the application is launched.
anode is a run-time container into which modules are loaded and which keeps track of blocks etc.

types: microblx essentially uses the C type system (primitive types, structs and arrays of both) for configs and
data sent via ports. To be supported by tools (that is in usc files or by tools like ubx-mgq), custom types must
be registered with microblx. The stdtypes module contains a large number of common types like int, double,
stdints (inz32_t) or time handling ubx_tstat.

cblocks vs iblocks: there are two types of blocks: cblocks (computation blocks) are the “regular” functional
blocks with a step hooks. In contrast iblocks (interaction blocks) are used to implement communication between
blocks and implement read and write hooks. For most applications the available iblocks are sufficient, but
sometimes creating a custom one can be useful.

triggers: triggers are really just cblocks with a configuration for specifying a schedule and other properties such
as period, thread priority, etc. ptrig is the most commonly used trigger which implements a periodic, POSIX
pthread based trigger. Sometimes it is useful to implement custom triggers that trigger based on external events.
The trig_utils functions (see ./libubx/trig_utils.h) make this straightforward.

dynamic block interface: sometimes the type or length of the port data is not static but depends on configuration
values themselves. This is almost always the case for iblocks

Chapter 2. Getting started

CHAPTER 3

Developing microblx blocks

3.1 Overview

Generally, building a block entails the following:

1. declaring configuration: what is the static configuration of a block
declaring ports: what is the input/output of a block
declaring types: which data types are communicated / used as configuration

declaring block meta-data: providing further oinformation about a block

A

declaring and implementing hook functions: how is the block initialized, started, run, stopped and cleaned up?
1. reading configuration values: retrieving and using configuration from inside the block
2. reading and writing data from resp. to ports

6. declaring the block: how to put everything together

7. registration of blocks and types in module functions: make block prototypes and types known to the system

The following describes these steps in detail and is based on the (heavily) documented random number generator block
(std_blocks/random/).

Note: Instead of manually implementing the above, a tool ubx—genblock is available which can generate blocks
including interfaces from a simple description. See Generating blocks with ubx_genblock.

3.2 Declaring configuration

microblx Documentation

Note: Since microblx v0.9, static block definitions must use the “proto” types ubx_proto_config_t,
ubx_proto_port_t and ubx_proto_block_t to define prototype blocks. At runtime (i.e. in hooks etc) the
non-_proto_ versions are used as before

Configuration is described with a { 0 } terminated array of ubx_proto_config_t types:

ubx_proto_config_t rnd_config[] = {
{ .name="min max_config", .type_name = "struct random_config" 1},
{ 01},

bi

The above defines a single configuration called min_max_config of the type struct random_config.

Note: custom types like struct random_config must be registered with the system. (see section Declaring
types.) Primitives (int, float, uint32_t, ...) are available from the stdt ypes module.

To reduce boilerplate validation code in blocks, min and max attributes can be used to define the expected array length
of configuration values. For example:

ubx_config_t rnd_config[] = {
{ .name="min_max_config", .type_name = "struct random_config", .min=1, .max=1 },
{03,

}i

These specifiers require that this block must be configured with exactly one struct random_config value.
Checking will take place before the transition to inactive (i.e. before init).

In fewer cases, configuration takes place in state inactive and must be checked before the transition to active.
That can be achieved by defining the config attribute CONFIG_ATTR_CHECKLATE.

Legal values of min and max are summarized below:

min | max result

0 0 no checking (disabled)

0 1 optional config

1 1 mandatory config

0 CONFIG_LEN_MAX | zero to many

0 undefined Zero to many

N M must be between N and M

3.3 Declaring ports

Like configurations, ports are described witha { O } terminated array of ubx_proto_port_t types:

ubx_proto_port_t rnd_ports[] = {
{ .name="seed", .in_type_name="unsigned int" 1},
{ .name="rnd", .out_type_name="unsigned int" 1},
{ 01},

}i

Depending on whether an in_type_name, an out_type_name or both are defined, the port will be an in-, out-
or a bidirectional port.

8 Chapter 3. Developing microblx blocks

microblx Documentation

3.4 Declaring block meta-data

char rnd_metal[] =
"{ doc='A random number generator function block',
" realtime=true,"

Vl}ll;

Additional meta-data can be defined as shown above. The following keys are commonly used so far:
* doc: short descriptive documentation of the block

e realtime: is the block real-time safe, i.e. there are no memory allocation / deallocation and other non
deterministic function calls in the step function.

3.5 Declaring/implementing block hook functions

The following block operations can be implemented to realize the blocks behavior. All are optional.

int rnd_init (ubx_block_t +*Db);
int rnd_start (ubx_block_t =xb);
void rnd_stop (ubx_block_t «*b);
void rnd_cleanup (ubx_block_t «*b);
void rnd_step (ubx_block_t «*b);

These functions will be called according to the microblx block life-cycle finite state machine:

Fig. 1: Block lifecycle FSM

They are typically used for the following:

e init: initialize the block, allocate memory, drivers: check if the device exists. Return zero if OK, non-zero
otherwise.

* start: become operational, open/enable device, carry out last checks. Cache pointers to ports, apply configu-
rations.

* step: read from ports, compute, write to ports
* stop: stop/close device. stop is often not used.

e cleanup: free all memory, release all resources.

3.5.1 Storing block local state

As multiple instances of a block may exists, NO global variables may be used to store the state of a block. Instead, the
ubx_block_t defines a voidx private_data pointer which can be used to store local information. Allocate
this in the init hook:

b->private_data = calloc(l, sizeof (struct random_info))

if (b->private_data == NULL) {
ubx_err (b, "Failed to alloc random_info");
goto out_err;

3.4. Declaring block meta-data 9

microblx Documentation

Retrieve and use it in the other hooks:

struct block_info *inf;

inf = (struct random_infox) b->private_data;

3.5.2 Reading configuration values

Configurations can be accessed in a type safe manner using the cfg_getptr_<TYPE> familiy of functions, which
are available for all basic types. For example, the following snippet retrieves a scalar uint 32_t config and uses a
default 47 if unconfigured:

long len;
uint32_t =*value;

if ((len = cfg_getptr_int (b, "myconfig", &value)) < 0)
goto out_err;

value = (len > 0) ? xvalue : 47;

Defining type safe configuration accessors for custom types can be achieved using the macros described in section
Declaring type safe accessors.

The following example from the random (std_blocks/ubx/random.c) block shows how this is done for
struct min_max_config

def_cfg_getptr_fun(cfg_getptr_random_config, struct random_config)

int rnd_start (ubx_block_t =xb)
{
long len;
const struct random_configx rndconf;

[*ooox/

/* get and store min_max_config =*/
len = cfg_getptr_random_config(b, "min _max config", &rndconf);

if (len < 0) {
ubx_err (b, "failed to retrieve min_max_config");
return -1;

} else 1if (len == 0) {
/% set a default =/

inf->min = 0;
inf->max = INT_MAX;
} else {
inf->min = rndconf->min;
inf->max = rndconf->max;

Like with the first example, the the generated accessor cfg_getptr_random_config returns <0 in case of error,
0 if unconfigured, or the array length (>0) if configured. If >0 rndconf will be set to point to the actual configuration
data.

10 Chapter 3. Developing microblx blocks

microblx Documentation

Copy configs or use pointer directly?

In the above example, the configuration values are copied to the internal info struct. This is done to be able to assign
defaults should no configuration have been given by the user. If this is not required (e.g. for mandatory configurations),
it is perfectly OK to use the pointers retrieved via cfg_getptr... functions directly. The following table summarizes
the permitted changes in each block state:

block state | allowed config changes
preinit resizing and changing values
inactive | changing values

active no changes allowed

Due to possible resizing in preinit, config ptr and length should be re-retreived in init.

When to read configuration: init vs start?

It depends: if needed for initalization (e.g. a char array describing which device file to open), then read in init. If
it’s not needed in init (e.g. like the random min-max values in the random block example), then read it in start.

This choice affects reconfiguration: in the first case the block has to be reconfigured by a stop, cleanup, init,
start sequence, while in the latter case only a stop, start sequence is necessary.

3.5.3 Reading from and writing to ports

Writing to ports can be done using the write_<TYPE>or write_<TYPE>_array functions. For example:

/* writing to a port x/
unsigned int val = 1;
write_uint (my_outport, &val);

/* reading from a port =*/
long len;
int val;

len = read_int (my_inport, &val);

if (len < 0)
ubx_err (b, "port read failed");
return -1;
else 1f (len == 0) {
/+ no data on port =/
return 0O;
} else {
ubx_info (b, "new data: %i", wval);

For more see std_blocks/ramp/ramp.c.

Type safe read/write functions are defined for all basic types and availale via the <ubx . h> header. Defining similar
functions for custom types can be done using the macros described in Declaring type safe accessors.

3.5. Declaring/implementing block hook functions 11

microblx Documentation

3.6 Declaring the block

The block aggregates all of the previous declarations into a single data-structure that can then be registered in a
microblx module:

ubx_proto_block_t random_comp = {
.name = "myblocks/random",
.type = BLOCK_TYPE_COMPUTATION,
.meta_data = rnd_meta,

.configs = rnd_config,
.ports = rnd_ports,
.init = rnd_init,
.start = rnd_start,
.step = rnd_step,
.cleanup = rnd_cleanup,

}i

3.7 Declaring types

All types used for configurations or ports must be declared and registered. This is necessary because microblx needs to
know the size of the transported data. Moreover, it enables type reflection which is used by logging or the webinterface.

In the random block example, we used a struct random_config, that is defined in types/
random_config.h:

struct random_config {
int min;
int max;

}i

It can be declared as follows:

ubx_type_t random_config_type = def_struct_type (struct random_config, &random_config_
—h);

This fills in a ubx_type_t data structure called random_config_type, which stores information on types.
Using this type declaration the st ruct random_config can then be registered with a node (see “Block and type
registration” below).

3.7.1 Declaring type safe accessors

The following macros are available to define type safe accessors for accessing configuration and reading/writing from
ports:

def_type_accessors (SUFFIX, TYPENAME)

/* will define the following functions x/

long read_SUFFIX (const ubx_port_t* p, TYPENAMEx val);

int write_SUFFIX (const ubx_port_t =xp, const TYPENAME =xval);

long read_SUFFIX_array (const ubx_port_tx p, TYPENAMEx val, const int len);

(continues on next page)

12 Chapter 3. Developing microblx blocks

microblx Documentation

(continued from previous page)

int write_SUFFIX_array (const ubx_port_t+* p, const TYPENAMEx val, const int len);
long cfg_getptr_SUFFIX(const ubx_block_t xb, const char xcfg_name, const TYPENAME
—**xvalptr);

Using these is strongly recommended for most blocks.

Variants:
e def_port_accessors (SUFFIX, TYPENAME) will define the port but not the config accessors.
e def_cfg_getptr_fun (FUNCNAME, TYPENAME) will only define the config accessor

e def_port_writers (FUNCNAME, TYPENAME) and def_port_readers (FUNCNAME,
TYPENAME) will only define the port write or read accessors respectively.

3.7.2 What is this .hexarr file

The file types/random_config.h.hexarr contains the contents of the file types/random_config.h
converted to an array const char random_config_h [] using the tool tools/ubx—-tocarr. This char
array is stored in the ubx_type_t private_data field (the third argument to the def_struct_type macro).
At runtime, this type model is loaded into the luajit ffi, thereby enabling type reflection features such as logging or
changing configuration values via the webinterface. The conversion from .h to .hexarray is done via a simple
Makefile rule.

This feature is very useful but optional. If no type reflection is needed, don’t include the . hexarr file and pass NULL
as a third argument to def_struct_type.

3.8 Block and type registration

So far we have declared blocks and types. To make them known to the system, these need to be registered when
the respective module is loaded in a microblx node. This is done in the module init function, which is called when a
module is loaded:

1: static int rnd_module_init (ubx_node_t* ni)

20 A

3: ubx_type_register (nd, &random_config_type);
4 return ubx_block_register (nd, &random_comp) ;
5: 1}

6: UBX_MODULE_INIT (rnd_module_init)

Line 3 and 4 register the type and block respectively. Line 6 tells microblx that rnd_module_init is the module’s
init function.

Likewise, the module’s cleanup function should deregister all types and blocks registered in init:

static void rnd_module_cleanup (ubx_node_t =*nd)

{
ubx_type_unregister(nd, "struct random_config");
ubx_block_unregister (nd, "ubx/random");

}

UBX_MODULE_CLEANUP (rnd_module_cleanup)

3.8. Block and type registration 13

microblx Documentation

3.9 Real-time logging

Microblx provides logging infrastructure with loglevels similar to the Linux Kernel. Loglevel can be set on the (global)
node level (e.g. by passing it ~-1oglevel N toubx-launch or be overridden on a per block basis. To do the latter,
a block must define and configure a 1oglevel config of type int. If it is left unconfigured, again the node loglevel
will be used.

The following loglevels are supported:
* UBX_LOGLEVEL_EMERG (0) (system unusable)
* UBX_LOGLEVEL_ALERT (1) (immediate action required)
e UBX_LOGLEVEL_CRIT (2) (critical)
e UBX_LOGLEVEL_ERROR (3) (error)
e UBX_LOGLEVEL_WARN (4) (warning conditions)
e UBX_LOGLEVEL_NOTICE (5) (normal but significant)
* UBX_LOGLEVEL_INFO (6) (info message)
* UBX_LOGLEVEL_DEBUG (7) (debug messages)

The following macros are available for logging from within blocks:

ubx_emerg (b, fmt, ...)
ubx_alert (b, fmt, ...)
ubx_crit (b, fmt, ...)
ubx_err (b, fmt, ...)
ubx_warn (b, fmt, ...)
ubx_notice (b, fmt, ...)
ubx_info (b, fmt, ...)
ubx_debug (b, fmt, ...)

Note that ubx_debug will only be logged if UBX_DEBUG is defined in the respective block and otherwise compiled
out without any overhead.

To view the log messages, you need to run the ubx—10g tool in a separate window.

Important: The maximum total log message length (including is by default set to 120 by default), so make sure to
keep log message short and sweet (or increase the length for your build).

Note that the old (non-rt) macros ERR, ERR2, MSG and DBG are deprecated and shall not be used anymore.

Outside of the block context, (e.g. inmodule_init ormodule_cleanup, you can log with the lowlevel function

ubx_log(int level, ubx_node_t #*nd, const charx src, const charx fmt, ...)

/+ for example x/
ubx_log (UBX_LOGLEVEL_ERROR, ni, _ FUNCTION__ , "error %u", x);

The ubx core uses the same logger mechanism, but uses the 1log_info resp. logf_info variants. See 1ibubx/
ubx . c for examples.

3.10 SPDX License Identifiers

Microblx uses a macro to define module licenses in a form that is both machine readable and available at runtime:

14 Chapter 3. Developing microblx blocks

microblx Documentation

’UBX_MODULE_LICENSE_SPDX(MPL—2.0)

To dual-license a block, write:

’UBX_MODULE_LICENSE_SPDX(MPL—2.0 BSD-3-Clause)

Is is strongly recommended to use this macro. The list of licenses can be found on http://spdx.org/licenses

3.11 Generating blocks with ubx_genblock

The ubx-genblock tool generates a microblx block including a Makefile. After this, only the hook functions need
to be implemented in the . c file:

Example: generate stubs for a myblock block (see examples/block_model_example. lua for the block

generator model).

$ ubx-genblock
—example.lua
generating
generating
generating
generating
generating
generating
generating
generating

-d myblock -c /usr/local/share/ubx/examples/blockmodels/block_model_

myblock/bootstrap
myblock/configure.ac
myblock/Makefile.am
myblock/myblock.h
myblock/myblock.c
myblock/myblock.usc
myblock/types/vector.h
myblock/types/robot_data.h

Run ubx—-genblock -h for full options.

The following files are generated:

* bootstrap autoconf bootstrap script

e configure.ac autoconf input file

* Makefile.am automake input file

* myblock.h block interface and module registration code (don’t edit)

* myblock.c module body (edit and implement functions)

* myblock.usc simple microblx system composition file, see below (can be extended)

* types/vector.h sample type (edit and fill in struct body)

* robot_data.h sample type (edit and fill in struct body)

If the command is run again, only the . c file will NOT be regenerated. This can be overridden using the —-force

option.

3.11.1 Compile the block

$ cd myblock/
$./bootstrap
$./configure
$ make

$ make install

3.11. Generating blocks with ubx_genblock 15

http://spdx.org/licenses

microblx Documentation

3.11.2 Launch block using ubx-launch

$ ubx—-ilaunch -webif -c myblock.usc

Run ubx—-launch -h for full options.

Browse to http://localhost:8888

3.12 Block Interface Guidelines

* use long (signed) for ubx type related lengths and sizes. This is sufficently large and errors can be returned as
negative values (example: cfg_getptr_uint32).

* (i)blocks that allow configuring type and length of data to be handled should use the canonical config names
type_name and data_len.

16 Chapter 3. Developing microblx blocks

http://localhost:8888

CHAPTER 4

Composing microblx systems

Building a microblx application typically involves instantiating blocks, configuring and interconnecting their ports and

finally starting all blocks. The recommended way to do this is by specifying the system using the microblx composition
DSL.

4.1 Microblx System Composition DSL (usc files)

usc are declarative descriptions of microblx systems that can be validated and instantiated using the ubx-launch
tool. A usc model describes one microblx system, as illustrated by the following minimal example:

local bd = require("blockdiagram")

return bd.system
{
—— import microblx modules
imports = {
"stdtypes", "ptrig", "lfds_cyclic", "myblocks",
}I

—— describe which blocks to instantiate
blocks = {

{ name="x1", type="myblocks/x" 1},

{ name="y1", type="myblocks/y" },

{ name="ptrigl", type="ubx/ptrig" },

by

—— connect blocks
connections = {

{ src="xl.out", tgt="yl.in" },

{ src="yl.out", tgt="x1.in", buffer_len=16 },
}I

(continues on next page)

17

microblx Documentation

(continued from previous page)

—-— configure blocks
configurations = {
{ name="x1", config = { cfgl="foo", cfg2=33.4 } },
{ name="y1", config = { cfgA={ p=1,z=22.3 }, cfg2=33.4 } },

-— configure a trigger
{ name="trigl", config = { period = {sec=0, usec=100000 1},
sched_policy="SCHED_OTHER",
sched_priority=0,
chain0={
-— the
—-— be resolved to an actual
—-— reference to the respective
—-— block once instantiated
{ b="#x1", num_steps=1l, measure=0 },
{ b="#y1", num_steps=1, measure=0 } } } }

4.1.1 Launching

usc files like the above example can be launched using ubx—-1aunch tool. Run with —h for further information. The
following example

$ cd /usr/local/share/ubx/examples/usc/pid/
$ ubx-launch -webif -c pid_test.usc,ptrig_nrt.usc

will launch the given system composition and in addition create and configure a web server block to allow the system
to be introspected via browser.

Unless the —-nostart option is provided, all blocks will be initialized, configured and started. ubx-launch han-
dles this in safe way by starting up active blocks after all other blocks (In earlier versions, there was start di-
rective to list the blocks to be started, however now this information is obtained by means of the block attributes
BLOCK_ATTR_ACTIVE and BLOCK_ATTR_TRIGGER.)

4.1.2 Node configs

Node configs allow to assign the same configuration to multiple blocks. This is useful to avoid repeating global
configuration values that are identical for multiple blocks.

The node_configurations keyword allows to define one or more named node configurations.

node_configurations = {
global_rnd_conf = {
type = "struct random_config",
config = { min=333, max=999 },

These configurations can then be assigned to multiple blocks:

{ name="bl", config = { min_max_config = "&global_ rnd_conf"} },
{ name="b2", config = { min_max_config = "&global rnd_conf"} 1},

18 Chapter 4. Composing microblx systems

microblx Documentation

Please refer to examples/systemmodels/node_config_demo.usc for a full example.

4.1.3 Connections

The powerful connections keyword supports connecting blocks in multiple ways:
* cblocks to cblocks
* cblocks to iblocks
* cblocks to non-existing iblocks (the latter are created on the fly)

The syntax for these variants is discussed below.

cblock to cblock connections

The following example shows how to create ports among cblock ports:

{ src="blkA.portX", tgt="blkB.portY", type="lfds_cyclic", config = { ... }

* both src and tgt are of the form CBLOCK . PORT. Both blocks and ports must exist.
* type specifies the type of iblock to create for the connection. If unset it defaults to ubx/1fds_cyclic

e config is the optional configuration to apply to the newly created iblock. The configs type_name and
data_len are set automatically unless specified.

cblock to iblock

The following examples illustrates creating connections to/from an existing iblock myMq:

{ src="blkX.portz", tgt="myMQO" }
-— or

{ src="myMQ", tgt="blkX.portz" }

* the iblock must exist and be of the form IBLOCK (i.e. no port).
e the cblock must exist and be of the form CBLOCK.PORT

* type and config must not be set (they will be ignored with a warning).

cblock to non-existing iblock

The following example creates a new mqueue with an automatic, unique name, configures it with conf i g and connect
blkX.port?z toit:

{ src="blkX.portz", type="ubx/mqueue", config={ buffer_len=32 } }

* type must be set to desired iblock type and one of src or tgt must be unset
* type_name, data_lenand buffer_len are set automatically unless defined in config.

* for type ubx/mqueue: if no mg_id is set in config, then mg_id is set to the corresponding peer
“BLOCK.PORT”, e.g. to b1kX.portZ in the example above.

This form is useful to create one-line connections via mqueues or similar.

4.1. Microblx System Composition DSL (usc files) 19

microblx Documentation

4.2 Hierarchical compositions

Using hierarchical composition' an application can be composed from other compositions. The motivation is to permit
reuse of the individual compositions.

The subsystems keyword accepts a list of namespace-subsystem entries:

return bd.system {
import =
subsystems = {
subsysl = bd.load("subsysl.usc"),
subsys2 bd.load ("subsysl.usc"),

Subsystem elements like configs can be accessed by higher levels by adding the subsystem namespace. For example,
the following lines override a configuration value of the b1k block in subsystems sub11 and subl1l/sub21l:

configurations = {
{ name="subll/blk", config { cfghA=1, cfgB=2 } 1},
{ name="subll/sub21/blk", config = { cfgA=5, cfgB=6 } },

Note how the subsystem namespaces prevent name collisions of the two identically names blocks. Similar to configu-
rations, connections can be added among subsystems blocks:

connections = {
{ src="subll/sub2l/blk.portX", tgt="subll/blk.port¥Y" },

}y

When launched, a hierarchical system is instantiated in a similar way to a non-hierarchical one, however:
* modules are only imported once

* blocks from all hierarchy levels are instantiated, configured and started together, i.e. the hierarchy has no
implications on the startup sequence.

* microblx block names use the fully qualified name including the namespace. Therefore, the #blockname syntax
for resolving block pointers works just the same.

« if multiple configs for the same block exist, only the highest one in the hierarchy will be applied.

* node configs are always global, hence no prefix is required. In case of multiple identically named node configs,
the one at the highest level will be selected.

4.2.1 Merging subsystems

It is possible to add a subsystem without a namespace, as shown by the following snippet:

return bd.system {
subsystems = {
bd.load ("subsysl.usc"),

! This feature was introduced in the context of the COCORF RobMoSys Integrated Technical Project. Please see docs/dev/001-blockdiagram-
composition.md for background information.

20 Chapter 4. Composing microblx systems

https://github.com/kmarkus/microblx/blob/cocorf/docs/dev/001-blockdiagram-composition.md
https://github.com/kmarkus/microblx/blob/cocorf/docs/dev/001-blockdiagram-composition.md

microblx Documentation

In this case, the subsys1.usc system will be merged directly into the parent system. Note that entries of the parent
system take precedence, so in case of conflicts elements of the subsystem will be skipped.

This feature is useful to avoid an extra hierarchy level.

4.3 Model mixins

To obtain a reusable composition, it is important to avoid introducing platform specifics such as pt rig blocks and
their configurations. Instead, passive t rig blocks can be used to encapsulate the trigger schedule. pt rig or similar
active blocks can then be added at launch time by merging them (encapsulated in an usc file) into the primary model
by specifying both on the ubx—-1aunch command line.

For example, consider the example in examples/systemmodels/composition:

ubx-launch -webif -c deep_composition.usc,ptrig.usc

Note: unlike merging from within the usc using an unnamed subsystems entry (see Merging subsystems), models
merged on the command line will override existing entries.

4.4 Alternatives

Although using usc model is the preferred approach, there are others way to launch a microblx application:

4.4.1 LaunchinginC

It is possible to avoid the Lua scripting layer entirely and launch an application in C/C++. A small self-contained
example c—launch. c is available under examples/C/ (see the README for further details).

For a more complete example, checkout the respective tutorial section Deployment via C program. Please note that
such launching code is a likely candidate for code generation and there are plans for a usc-to-C compiler. Please ask
on the mailing if you are interested.

4.4.2 Lua scripts

One can write a Lua “deployment script” similar to the ubx-1aunch. Checkout the scripts in the tools section.
This approach not recommended under normally, but can be useful in specific cases such as for building dedicated test
tools.

4.3. Model mixins 21

microblx Documentation

22 Chapter 4. Composing microblx systems

CHAPTER B

Tutorial: close loop control of a robotic platform

5.1 Goal

This walk-through that shows how to:
1. write, compile and install two blocks:
* the plant (a two DoF robot that accepts velocity as input, and gives the relative position), and

* the controller, that given as a property the set-point and the gain, computes the desired velocity to be set
to the robot.

2. instantiate the blocks via the ubx—1aunch tool, and
3. instantiate the blocks with a C program.

All the files can be found in the examples/plat form folder.

5.2 Introductory steps

First of all, we need need to define the interface of and between our two components.

The plant and controller have two ports, that exchange position and velocity, each of dimension two, and some prop-
erties (initial position and velocity limits for the plant, gain and setpoint for the controller). These properties are
described it two lua files:

The plant, plat form_2dof.lua

return block

{
name="platform_2dof",
license="MIT",
meta_data="",
port_cache=true,

(continues on next page)

23

microblx Documentation

(continued from previous page)

configurations= {
{ name="joint_velocity_ limits", type_name="double", min=2, max=2 },
{ name="initial position", type_name="double", min=2, max=2 },

by

ports = {
{ name="pos", out_type_name="double", out_data_len=2, doc="measured position [m]
;}" }I
{ name="desired vel", in_type_name="double", in_data_len=2, doc="desired
—velocity [m/s]" }

b

operations = { start=true, step=true }

The controller, plat form_2dof_control.lua

return block

{

name="platform_2dof_control",
license="MIT",

meta_data="",
port_cache=true,

configurations= ({
{ name="gain", type_name="double", min=1, max=1 },
{ name="target_pos", type_name="double", min=2, max=2 },

by

ports = {
{ name="measured_pos", in_type_name="double", in_data_len=2, doc="measured,
—position [m]" 1},
{ name="commanded_vel", out_type_name="double", out_data_len=2, doc="desired

wvelocity [m/s]1" },
}’

operations = { step=true }

Let us have these file in a folder (e.g. microblx_tutorial). From these file we can generate the two blocks using the the
following bash commands

$ cd microblx_tutorial/
$ ubx—-genblock -c platform_2dof.lua -d platform_2dof
generating platform_2dof/bootstrap

$ ubx—-genblock -c platform_2dof_control.lua -d platform_2dof_control
generating platform_2dof_control/bootstrap

Each command generates a directory with the name specified after the -d with six files. For the plant, we will have:
* boostrap
* configure.ac

* Makefile.am

24 Chapter 5. Tutorial: close loop control of a robotic platform

microblx Documentation

e platform_2dof.h
e platform 2dof.c
* platform_2dof.usc

The only files we will modify are the C files plat form_2dof.c and platform_2dof_control.c.

5.3 Code of the blocks

The auto-generated files already give some hints on how to approach the programming.

/* define a structure for holding the block local state. By assigning an
* instance of this struct to the block private_data pointer (see init), this
* information becomes accessible within the hook functions.
*/
struct platform_2dof_info
{
/* add custom block local data here =/

/* this is to have fast access to ports for reading and writing, without
+ needing a hash table lookup */
struct platform_2dof_port_cache ports;
bi

/* init */
int platform 2dof_init (ubx_block_t *b)
{

int ret = -1;

struct platform 2dof_info xinf;

/* allocate memory for the block local state */

if ((inf = calloc(l, sizeof (struct platform 2dof_info)))==NULL) {
ubx_err (b, "platform_2dof: failed to alloc memory");
ret=EOUTOFMEM;
goto out;

}

b->private_data=inf;

update_port_cache (b, &inf->ports);

ret=0;

out:
return ret;

/* start */
int platform_2dof_start (ubx_block_t =xb)
{

/* struct platform_2dof_info xinf = (struct platform_2dof_infox) b->private_
—data; =*/

ubx_info (b, "%s", __ func_);

int ret = 0;

return ret;

/+ cleanup =/

(continues on next page)

5.3. Code of the blocks 25

microblx Documentation

(continued from previous page)

void platform 2dof_cleanup (ubx_block_t «b)
{

/* struct platform_2dof_info xinf = (struct platform_2dof_infox) b->private_
—data; */
ubx_info (b, "%s", _ func_);

free (b->private_data);

/* step =/
void platform 2dof_step (ubx_block_t «*b)
{

/* struct platform_2dof_info xinf = (struct platform_2dof_infox) b->private_
—data; =*/
ubx_info (b, "%s", __ _func_);

We will need then to insert the code indicated by the comments.

5.3.1 Step 1: add block state and helpers

First add variables for storing the robot state, and implement the other helper functions. At the beginning of the file
we insert the following code, to save the state of the robot:

struct robot_state {
double pos[2];
double vell[2];
double vel_limit[2];

}i

double sign (double x)

{
if(x > 0) return 1;
if(x < 0) return -1;
return 0;

struct platform_2dof_info
{

struct robot_state r_state;
struct ubx_timespec last_time;

struct platform_2dof_port_cache ports;

}i

The last_time variable is needed to compute the time passed between two calls of the plat form_2dof_step
function.

5.3.2 Step 2: Initialization and start functions

The init function is called when the block is initialized; it allocates memory for the info structure, caches the ports,
and initializes the state given the configuration values (these values are specified in the . usc or main application file).

26 Chapter 5. Tutorial: close loop control of a robotic platform

microblx Documentation

int platform_2dof_init (ubx_block_t =xb)
{

long len;

struct platform_2dof_info *inf;

const double *pos_vec;

if ((inf = calloc(l, sizeof (struct platform_2dof_info)))==NULL) {
ubx_err (b, "platform_2dof: failed to alloc memory");
return EOUTOFMEM;

b->private_data=inf;
update_port_cache (b, &inf->ports);

len = cfg_getptr_double (b, "initial_ position", &pos_vec);

assert (len==2);

inf->r_state.pos[0] = pos_vec[0];
inf->r_state.pos[l] = pos_vec[l];

len = cfg_getptr_double (b, "Jjoint_velocity_limits", &pos_vec);
assert (len==2);

inf->r_ state.vel_limit
inf->r_state.vel_limit
inf->r state.vel[0]
inf->r state.vel[l]

0] = pos_vec[0];
1] = pos_vec[l];
.0
.0

’

|
O O =

’

return 0;

The function

long cfg_getptr_double (ubx_block_t *b, const char *name, const double *xptr)

returns the address of the double configuration in the pointer pt r. In this case the return value will be 2 (the length
of the data) or —1 (failure, e.g. mistyped configuration name). Because we set min and max in the configuration
declaration, we can be sure that at this point the array length is not anything but 2.

In the start function we only need to initialize the internal timer

int platform_2dof_start (ubx_block_t =xb)
{
struct platform 2dof_info xinf = (struct platform_2dof infox) b->private_data;
ubx_info (b, "platform_2dof start");
ubx_gettime (&inf->last_time);
return 0;

5.3. Code of the blocks 27

microblx Documentation

5.3.3 Step 3: Step function

In the step function, we compute the time since last iteration, read the commanded velocity, integrate to position, and
then write position.

void platform_2dof_step (ubx_block_t =xb)
{
int32_t ret;
double velocity[2];
struct ubx_timespec current_time, difference;
struct platform 2dof_info xinf = (struct platform 2dof infox) b->private_data;

ubx_gettime (¤t_time);

ubx_ts_sub (¤t_time, &inf->last_time, &difference);
inf->last_time = current_time;

double time_passed = ubx_ts_to_double (&difference);

ret = read_double_array (inf->ports.desired_vel, velocity, 2);
assert (ret>=0);

if (ret == 0) {
ubx_notice (b, "no velocity setpoint");
velocity[0] = velocity[l] = 0.0;
}
for (int i=0; 1<2; 1i++) {
velocity[i] =
fabs (velocity[i]) > inf->r_state.vel_limit[i] ?
sign(velocity[i]) * (inf->r_state.vel_limit[i]) : velocityl[i];

inf->r_ state.pos[i] += velocity[i] = time_passed;

ubx_debug (b, "writing pos [%f, %f]",
inf->r_state.pos[0], inf->r_state.pos[1]);
write_double_array (inf->ports.pos, inf->r_state.pos, 2);

In case there is no value on the port, a notice is logged and the nominal velocity is set to zero. This will always happen
for the first trigger, since the controller did step yet and thus has not produced a velocity command yet.

5.3.4 Step 4: Stop and clean-up functions

These functions are OK as they are generated, since the only thing we want to take care of is that memory is freed.

5.3.5 Final listings of the block
The plant is, mutatis mutandis, built following the same rationale, and will be not detailed here. The final code of the
plant and the controller can be retrieved here:

* platform_2dof.c

e platform_2dof_control.c

28 Chapter 5. Tutorial: close loop control of a robotic platform

microblx Documentation

5.3.6 Compiling the blocks

In order to build and install the blocks, you must execute the following bash commands in each of the two directories:

$./bootstrap
$./configure
$ make

$ sudo make install

See also the quickstart.

5.4 Deployment via the usc (microblx system composition) file

ubx-genblock generated sample .usc files to run each block independently. We want to run and com-
pose them together and make the resulting signals available using message queues. The composition file plat-
form_2dof_and_control.usc is quite self explanatory: It contains

* the libraries to be imported,

* which blocks (name, type) to create,
* the configuration values of blocks.

* the connections among ports

The file platform 2dof_and_control.usc is shown below:

return bd.system
{
imports = {

"stdtypes",
"ptrig",
"l1fds_cyclic",
"platform_2dof",
"platform_2dof_control",
"mqueue"

by

blocks = {
{ name="platl", type="platform_2dof" },
{ name="controll", type="platform 2dof_control" },
{ name="ptrigl", type="ubx/ptrig" },

}I

configurations = {
{ name="platl", config = {
initial position={1.1,1},
joint_velocity_limits={0.5,0.5} }
}I

{ name="controll", config = { gain=0.1, target_pos={4.5,4.5} } 1},

(continues on next page)

5.4. Deployment via the usc (microblx system composition) file 29

microblx Documentation

(continued from previous page)

{ name="ptrigl", config = { period = {sec=0, usec=100000 },
sched_policy="SCHED_OTHER",
sched_priority=0,
chainO={

{ b="#platl" },
{ b="#controll" } } } 1},
}V

connections = {
{ src="platl.pos", tgt="controll.measured_pos" },
{ src="controll.commanded_vel",tgt="platl.desired_vel" },
{ src="platl.pos", type="ubx/mqueue" },
{ src="controll.commanded_vel", type="ubx/mqueue" },

by

It is worth noting that configuration types can be arrays (e.g. target_pos), strings (file_name and

report_conf) and structures (period) and vector of structures (chainO). Types can be checked using
ubx-modinfo:

$ ubx-modinfo show platform_2dof
module platform_2dof
license: MIT

blocks:
platform_2dof [state: preinit, steps: 0] (type: cblock, prototype: false, attrs:)

configs:
joint_velocity_limits [double] nil //
initial_position [double] nil //

ports:
pos [out: double[2] #conn: 0] // measured position [m]
desired_vel [in: double[2] #conn: 0] // desired velocity [m/s]

The file is launched with the command

’ubx—ilaunch -c platform_2dof_and_control.usc

or

’ubx—ilaunch -webif -c platform_2dof_and_control.usc ‘

to enable the web interface at localhost:8888 .

To show the position and velocity signal, use the ubx-mqg tool:

$ ubx-mg list
e8cd7da078a86726031ad64£35f5a6¢c0 2 vel_cmd
eB8cd7dal078a86726031ad64£f35f5a6c0 2 pos_msr

$ ubx-mg read pos_msr

{1.1,1}
{1.13403850806,1.03503964065}
{1.1679003576875,1.0698974270313}
{1.2012522276799,1.1042302343764}
{1.2342907518755,1.1382404798718}

30 Chapter 5. Tutorial: close loop control of a robotic platform

localhost:8888

microblx Documentation

5.4.1 Some considerations about the fifos

First of all, consider that each (iblock) fifo can be connected to multiple input and multiple output ports. Consider
also, that if multiple out are connected, if one block read one data, that data will be consumed and not available for a
second port.

The more common use-case is that each outport is connected to an inport with it’s own fifo. If the data that is produced
by one outport is needed to be read by two oe more inports, a fifo per inport is connected to the the outport. If you use
the DSL, this is automatically done, so you do not have to worry to explicitly instantiate the iblocks. This also
happens when adding ports to the logger.

5.5 Deployment via C program

Warning: the following example is to illustrate the possibility of C only lauching, however generally, the usc
DSL should be preferred. Furthermore, an usc compiler that can automatically and safely generate the code below
is planned. If interested, please ask on the mailing list.

This example is an extension of the example examples/C/c—launch. c. It will be clear that using the above DSL
based method is somewhat easier, but if for some reason we want to eliminate the dependency from Lua, this example
show that is possible.

First of all, we need to make a package to enable the building. This can be done looking at the structure of the rest of
packages.

we will create a folder called platform_launch that contains the following files:
* main.c
* Makefile.am

e configure.am

5.5.1 Setup the build system starting from the build part

configure.ac

m4_define ([package_version_major], [0])
m4_define ([package_version_minor], [0])
m4_define ([package_version_micro], [0])

AC_INIT ([platform_launch], [package_version_major.package_version_minor.package_
—version_microl)
AM_INIT_AUTOMAKE ([foreign -Walll])

AC_PROG_CC

PKG_PROG_PKG_CONFIG
PKG_INSTALLDIR

AC_CONFIG_HEADERS ([config.h])
AC_CONFIG_MACRO_DIR([m4d])

(continues on next page)

5.5. Deployment via C program 31

microblx Documentation

(continued from previous page)

AC_PROG_INSTALL

m4_ifdef ([AM_PROG_AR], [AM_PROG_AR])
LT_INIT (disable-static)

PKG_CHECK_MODULES (UBX, ubx0 >= 0.9.0)

PKG_CHECK_VAR ([UBX_MODDIR], [ubx0], [UBX_MODDIR])
AC_MSG_CHECKING ([ubx module directory])
AS_IF ([test "xSUBX_MODDIR" = "x"], [

AC_MSG_FAILURE ([Unable to identify ubx module path.])

1)
AC_MSG_RESULT ([SUBX_MODDIR])

AC_CONFIG_FILES ([Makefile])
AC_OUTPUT

Makefile.am

ubxmoddir = ${UBX_MODDIR}

ACLOCAL_AMFLAGS= -I m4

ubxmod_PROGRAMS = platform_main

platform_main_SOURCES = main.c

platform_main_CFLAGS = @UBX_CFLAGSQ@ \
-IS{top_srcdir}/../../../std_blocks/trig/types/

platform_main_LDFLAGS = -module —-avoid-version -shared -export-dynamic @UBX_LIBS@ -
—1dl -lpthread

Here, we specify that the name of the executable is platform_main It might be possible that, if some custom types are
used in the configuration, but are not installed, they must be added to the CFLAGS:

platform_main_CFLAGS = -I${top_srcdir}/libubx -I path/to/other/headers QUBX_CFLAGS@

In order to compile, we will use the same commands as before (we do not need to install).

autoreconf —--install
./configure
make

5.6 The program

The main follows the same structure of the . usc file.

5.6.1 Logging

Microblx uses realtime safe functions for logging. For logging from the scope of a block the functions ubx_info,
ubx_info, efc are used. In the main we have to use the functions, ubx_1log, e.g.

ubx_log (UBX_LOGLEVEL_ERR, &ni, __ func__, "failed to init controll");

32 Chapter 5. Tutorial: close loop control of a robotic platform

microblx Documentation

More info on logging can be found in the Real-time logging.

5.6.2 Libraries

It starts with some includes (structs that are needed in configuration) and loading of the libraries

#include
#include

#define WEBIF_PORT "8810"

#include
#include

def_cfg_set_fun(cfg_set_ptrig_period, struct ptrig period);
def_cfg_set_fun(cfg_set_ubx_triggee, struct ubx triggee);

static const char* modules|[] = {
"/usr/local/lib/ubx/0.9/stdtypes.so",
"/usr/local/lib/ubx/0.9/ptrig.so",
"/usr/local/lib/ubx/0.9/platform_2dof.so",
"/usr/local/lib/ubx/0.9/platform_2dof_control.so",
"/usr/local/lib/ubx/0.9/webif.so",
"/usr/local/lib/ubx/0.9/1fds_cyclic.so",

by

int main ()

{
int ret = EXIT_FAILURE;
ubx_node_t nd;

ubx_block_t =xplatl, =xcontroll, *ptrigl, =*webif, xfifo_vel, xfifo_pos;

nd.loglevel = 7;
ubx_node_init (&nd, "platform_and_control", 0);

for (unsigned int 1=0; i<ARRAY_SIZE (modules); i++) {
if (ubx_module_load(&nd, modules[i]) != 0){

ubx_log (UBX_LOGLEVEL_ERR, &nd,__ func__,

)

—module %s %i",modules[1], 1);
goto out;

"fail to load _,

5.6.3 Block instantiation

Then we instantiate blocks (code for only one, for sake of brevity):

if ((platl = ubx_block_create(&nd, "platform 2dof", "platl"))==NULL) {

ubx_log (UBX_LOGLEVEL_ERR, &nd,__func__, "fail to create platl");

goto out;

5.6. The program

33

microblx Documentation

5.6.4 Property configuration

Now we have the more tedious part, that is the configuration. We use the type safe helper functions, for example

int cfg_set_double (const ubx_block_t *b, const char xcfg_name, const double x*valptr,
—const long len);

where
* b is the block
* cfg_name the name of the config to set
e valptr is a pointer to the value to assign to the config

e lenis the array size of valptr

String property

if (cfg_set_char(webif, "port", WEBIF_PORT, strlen(WEBIF_PORT))) {
ubx_log (UBX_LOGLEVEL_ERR, &nd,__func__, "failed to configure port_vel

goto out;

The string can be passed as a static const char[] orusinga #define.

Double property

double gain = 0.12;

if (cfg_set_double(controll, "gain", &gain, 1)) {
ubx_log (UBX_LOGLEVEL_ERR, &nd, __func__, "failed to configure gain");
goto out;

In this case, memory allocation is done for a scalar (i.e. size 1) . The second line says: consider d—>data as a pointer
to double, and assign to the pointed memory area the value 0.12.

Fixed size array of double

const double joint_velocity_limits[2] = { 0.5, 0.5 };

if (cfg_set_double(platl, "joint_velocity_limits", joint_velocity_limits, 2))
—{
ubx_log (UBX_LOGLEVEL_ERR, &nd,__func__, "failed to configure joint_
—velocity_limits");
goto out;

Almost the same as before, but being an array of two elements, we don’t need to take the reference & here.

34 Chapter 5. Tutorial: close loop control of a robotic platform

microblx Documentation

Structure pro perty

Same thing for st ruct types:

const struct ptrig_period period = { .sec=1, .usec=14 };

if (cfg_set_ptrig_period(ptrigl, "period", &period, 1)) {
ubx_log (UBX_LOGLEVEL_ERR, &nd,__func__, "failed to configure ptrig_
—period");
goto out;

Note that for custom types, it is necessary to define the accessor using a typemacro, e.g:

def_cfg_set_fun(cfg_set_ptrig_period, struct ptrig_period);

Array of structures:

const struct ubx_triggee chainO[] = {
{ .b = platl, .num_steps =1 },
{ .b = controll, .num_steps = 1 },
}i
if (cfg_set_ubx_triggee(ptrigl, "chainO0", chain0O, ARRAY_SIZE (chainO))) {
ubx_log (UBX_LOGLEVEL_ERR, &nd,__func__, "failed to configure chainO
4‘")7
goto out;

5.6.5 Port connection

To connect we have first to retrieve the ports, and then connect to an a iblock, the fifos. In the following, we have two
inputs and two output ports, that are connected via two fifos:

ubx_port_tx platl_pos = ubx_port_get (platl, "pos");

ubx_port_tx controll_measured_pos = ubx_port_get (controll, "measured_pos");
ubx_port_tx controll_commanded_vel = ubx_port_get (controll, "commanded_vel");
ubx_port_tx platl_desired_vel = ubx_port_get (platl,"desired vel");

ubx_ports_connect (platl_pos, controll_measured_pos, fifo_pos);
ubx_ports_connect (controll_commanded_vel, platl_desired_vel, fifo_vel);

5.6.6 Init and Start the blocks

Lastly, we need to init and start all the blocks. For example, for the control1 iblock:

if (ubx_block_init (controll) != 0) {
ubx_log (UBX_LOGLEVEL_ERR, &nd,__func__, "failed to init controll");
goto out;

(continues on next page)

5.6. The program 35

microblx Documentation

(continued from previous page)

if (ubx_block_start (controll) != 0) {
ubx_log (UBX_LOGLEVEL_ERR, &nd,__func__, "failed to start controll");
goto out;

The same applies to all other blocks.

Once all the blocks are running, the pt rigl block will step all the blocks in the configured order. To prevent the
main process to terminate, we can use ubx_wait_sigint to wait for the user to type ctrl-c:

ubx_wait_sigint (UINT_MAX) ;
printf ("shutting down\n");

Note that we have to link against pthread library, so the Makefile.am has to be modified accordingly:

platform_main_ LDFLAGS = -module —-avoid-version -shared -export-dynamic (@UBX_ LIBS@ -
—1dl -lpthread

5.7 Next steps

Some suggestions for next steps:

* it can be necessary to make the array size of data sent and received via ports configurable. Checkout the
saturation block for a simple example.

* sometimes a block shall support multiple types. This can be done at
— compile time: (example ramp block block)

— run-time: (examples: most iblocks, e.g. Ifds_cyclic)

36 Chapter 5. Tutorial: close loop control of a robotic platform

https://github.com/kmarkus/microblx/blob/master/std_blocks/saturation/saturation.c
https://github.com/kmarkus/microblx/blob/master/std_blocks/ramp/ramp.c
https://github.com/kmarkus/microblx/blob/master/std_blocks/lfds_buffers/lfds_cyclic.c

CHAPTER O

Frequently asked questions

6.1 Developing blocks

6.1.1 How to use C++ for blocks

Checkout the example std_blocks/cppdemo.

Note: designated initializers, which are used to initialize ubx_proto_ structures are only supported by g++ versions
8 and newer!

6.1.2 What the difference between block types and instances?

There are very few differences. A prototype block is added by module init functions using ubx_block_register
and must also be removed by the corresponding module cleanup hook using ubx_block_unregister. A proto-
type blocks prototype ptris NULL.

Block instances are cloned from existing blocks using ubx_block_create and the instances
block->prototype pointer is set to the block is was cloned from. Normally blocks are cloned from pro-
totype blocks, but it is possible to clone any block (a warning is issued currently).

That said, the above are internals and you should not rely on them. Instead, use the predicates b1lk_is_proto and
blk_1is_instance if you need to determine what is what.

6.1.3 Why do you cache port pointers in the block info structure?

For two reasons:
* it’s simpler to cache it once and then just use the pointer directly

* to alesser degree: for performance. It avoids a repeated hash table lookups in step.

37

microblx Documentation

Note that the ubx—genblock script automatically takes care caching ports of this.

6.1.4 Avoiding static

You can avoid cluttering block functions and globals with static, by adding —fvisibility=hidden to
CFLAGS.

6.2 Running microblx

6.2.1 blockXY.so or 1ibl£fds611.so.0: cannot open shared object file: No such
file or directory

There seems to be a bug in some versions of libtool which leads to the 1d cache not being updated. You can manually
fix this by running

’$ sudo ldconfig

Often this means that the location of the shared object file is not in the library search path. If you installed to a
non-standard location, try adding it to LD_LIBRARY_PATH, e.g.

’$ export LD_LIBRARY_PATH=/usr/local/lib/

It would be better to install stuff in a standard location such as /usr/local/.

6.2.2 luablock: “error object is not a string”

Note that this has been fixed in commit be63£6408bd4d.

This is most of the time happens when the strict module being loaded (also indirectly, e.g. via ubx.lua) in a
luablock. It is caused by the C code looking up a non-existing global hook function. Solution: either define all hooks
or disable the strict module for the luablock.

6.2.3 Running with real-time priorities

To run with realtime priorities, give the luajit binary cap_sys_nice capabilities, e.g:

$ sudo setcap cap_sys_nicetep “which luajit’

Note that this will grant these capabilities to luajit binary in PATH. If you don’t want to do this system-wide, you can
do this for alocal 1uajit binary instead.

In addition, you should pass the command-line option -mlockall to ubx—launch, to ensure memory is locked.
For scripts, pass the ND_MLOCK_ALL node attribute to ubx_node_init.

6.2.4 I’'m not getting core dumps when running with real-time priorities

This is not a bug, but a safety mechanism to prevent potential leaking of priviledged data from a setcap pro-
cess. To override this, pass the ubx—launch command-line arg —~dumpable or the for scripts the node attribute
ND_DUMPABLE.

38 Chapter 6. Frequently asked questions

https://bugs.debian.org/cgi-bin/bugreport.cgi?bug=684981

microblx Documentation

6.2.5 My script immedately crashes/finishes

This can have several reasons:

* You forgot the —i option to Lluajit: in that case the script is executed and once completed will immedately
exit. The system will be shut down / cleaned up immediately.

* You ran the wrong Lua executable (e.g. a standard Lua instead of luajit).

If none of this works, see the following topic.

6.3 Debugging

6.3.1 Debugging segfaults

One of the best ways to debug crashes is using gdb and the core dump file:

enable core dumps
$ ulimit -c unlimited
$ gdb luajit

(gdb) core-file core

(gdb) bt

Sometimes, running gdb directly on the processes produces better results than post-mortem coredumps. For example,
to run the pid example with gdb attached:

$ cd /usr/local/share/ubx/examples/usc/pid
$ gdb luajit --args luajit “which ubx-launch® -c pid_test.usc,ptrig_nrt.usc
GNU gdb (Debian 9.1-2) 9.1

Reading symbols from luajit...

(No debugging symbols found in luaijit)

(gdb) run

Starting program: /usr/bin/luajit /usr/local/bin/ubx-launch -c pid_test.usc,ptrig_nrt.
—UuscC

[Thread debugging using libthread_db enabled]

Using host libthread_db library "/l1ib/x86_64-1linux-gnu/libthread_db.so.1".
merging ptrig_nrt.usc into pid_test.usc

core_prefix: /usr/local

prefixes: /usr, /usr/local

[New Thread O0x7ff£f£7871700 (LWP 2831757)]

6.3.2 Running valgrind

Valgrind is very useful to track down memory leaks or sporadic segfaults. To run it on dynamically loaded modules,
the UBX_CONFIG_VALGRIND flag must be enabled in ubx.h. This flag will pass the RTLD_NODELETE flag to
dlopen (3), which causes modules not really to be unloaded. This is essential for valgrind to print meaningful traces
in module code.

After that, you can run valgrind as follows on an usc file:

6.3. Debugging 39

microblx Documentation

valgrind —--leak-check=full \
-—track-origins=yes \
luajit “which ubx-launch® -t 3 -c examples/usc/threshold.usc

This will run the demo for 3 seconds and then exit. Valgrind may print warnings related to luajit like Conditional
jump or move depends on uninitialised value, which can be ignored (or silenced by building luajit
with valgrind support , see -DLUAJIT_USE_VALGRIND)

Running a script can be done likewise:

$ valgrind --leak-check=full \
—-—track-origins=yes \
luajit tests/test_ptrig.lua

6.4 meta-microblx

6.4.1 building luaijit fails

luajit fails with the following message:

arm-poky-linux—-gnueabi-gcc -mfpu=neon -mfloat-abi=hard -mcpu=cortex—-a8 —-fstack-
—protector-strong -D_FORTIFY_ SOURCE=2 -Wformat -Wformat-security -Werror=format-
—security —--sysroot=/build/bbblack-zeus/build/tmp/work/cortexa8hf-neon-poky-linux-
—gnueabi/luajit/2.0.5+gitAUTOINC+02b521981la-r0/recipe-sysroot —-fPIC -Wall -D_
FILE_OFFSET_BITS=64 -D_LARGEFILE_SOURCE -U_FORTIFY_ SOURCE -DLUA_ROOT=\"/usr\" -
—DLUA_MULTILIB=\"1ib\" -fno-stack-protector -02 -pipe -g —-feliminate-unused-debug-
—types —-fmacro-prefix-map=/build/bbblack-zeus/build/tmp/work/cortexa8hf-neon-poky-
—linux—gnueabi/luajit/2.0.5+gitAUTOINC+02b521981la-r0=/usr/src/debug/luajit/2.0.
—5+gitAUTOINC+02b521981a-r0 -fdebug-prefix-map=/build/bbblack-
—zeus/build/tmp/work/cortexa8hf-neon-poky-linux—gnueabi/luajit/2.0.
—5+g1itAUTOINC+02b521981la-r0=/usr/src/debug/luajit/2.0.5+gitAUTOINC+02b521981a-r0
— -fdebug-prefix-map=/build/bbblack-zeus/build/tmp/work/cortexa8hf—
—neon-poky-linux-gnueabi/luajit/2.0.5+gitAUTOINC+02b521981la-r0/recipe-sysroot=
. —-fdebug-prefix-map=/build/bbblack-zeus/build/tmp/work/cortexa8hf-
—neon-poky-linux-gnueabi/luajit/2.0.5+gitAUTOINC+02b521981la-r0/recipe-sysroot—
—native= -c -o 1j_obj_dyn.o 1j_obj.c
In file included from /usr/include/bits/errno.h:26,

from /usr/include/errno.h:28,

from host/buildvm.h:13,

from host/buildvm_fold.c:6:
/usr/include/linux/errno.h:1:10: fatal error: asm/errno.h: No such file or directory

1]

| A

compilation terminated.

This solution is to install gcc—multilib on the build host.

40 Chapter 6. Frequently asked questions

CHAPTER /

Microblx Module Index

7.1 Module trig

7.1.1 Block ubx/trig

Type: cblock

Attributes: trigger

Meta-data: { doc="simple, activity-less trigger’, realtime=true, }
License: BSD-3-Clause

Configs
name type doc
num_chains int number of trigger chains. def: 1
tstats_mode int 0: off (def), 1: global only, 2: per block
tstats_profile_path | char directory to write the timing stats file to
tstats_output_rate | double | throttle output on tstats port
tstats_skip_first int skip N steps before acquiring stats
loglevel int
Ports
name out type outlen | intype | inlen | doc
active_chain int 1 switch the active trigger chain
tstats struct ubx_tstat | 1 timing statistics (if enabled)

41

microblx Documentation

7.2 Module ptrig

7.2.1 Block ubx/ptrig

Type: cblock
Attributes: trigger, active

Meta-data: { doc="pthread based trigger’, realtime=true, }

License: BSD-3-Clause

Configs
name type doc
period struct ptrig_period | trigger periodin { sec, ns }
stacksize size t stacksize as per pthread_attr_setstacksize(3)
sched_priority int pthread priority
sched_policy char pthread scheduling policy
affinity int list of CPUs to set the pthread CPU affinity to
thread_name char thread name (for dbg), default is block name
autostop_steps int64_t if set and > 0, block stops itself after X steps
num_chains int number of trigger chains (def: 1)
tstats_mode int enable timing statistics over all blocks
tstats_profile_path | char directory to write the timing stats file to
tstats_output_rate | double throttle output on tstats port
tstats_skip_first int skip N steps before acquiring stats
loglevel int
Ports
name out type outlen | intype | inlen | doc
active_chain int 1 switch the active trigger chain
tstats struct ubx_tstat | 1 out port for timing statistics
shutdown int 1 input port for stopping ptrig
7.2.2 Types
Table 1: Types
type name type class | size [B]
struct ptrig_period | struct 16

7.3 Module math_double

7.3.1 Block ubx/math_double

Type: cblock

42

Chapter 7. Microblx Module Index

microblx Documentation

Attributes:
Meta-data: { doc="math functions from math.h’, realtime=true, }
License: BSD-3-Clause

Configs
name type doc
func char math function to compute
data_len | long length of output data (def: 1)
mul double | optional factor to multiply with y (def: 1)
add double | optional offset to add to y after mul (def: 0)
Ports

name | outtype | outlen | intype inlen | doc
X double | 1 math input
y double | 1 math output

7.4 Module rand_double

7.4.1 Block ubx/rand_double

Type: cblock

Attributes:

Meta-data: { doc="double random number generator block’, realtime=true, }
License: BSD-3-Clause

Configs

name | type | doc
seed long | seed to initialize with

Ports

name | outtype | outlen | intype | inlen | doc
out double | 1 rand generator output

7.5 Module ramp_double

7.5.1 Block ubx/ramp_double

Type: cblock

7.4. Module rand_double 43

microblx Documentation

Attributes:

Meta-data: { doc="Ramp generator block’, realtime=true, }

License: BSD-3-Clause

Configs
name type doc
start double | ramp starting value (def 0)
slope double | rate of change (def: 1)
data_len | long length of output data (def: 1)
Ports
name | outtype | outlen | intype | inlen | doc
out double | 1 ramp generator output
7.6 Module pid
7.6.1 Block ubx/pid
Type: cblock
Attributes:
Meta-data: { doc=", realtime=true, }
License: BSD-3-Clause
Configs
name type doc
Kp double | P-gain (def: 0)
Ki double | I-gain (def: 0)
Kd double | D-gain (def: 0)
data_len | long length of signal array (def: 1)
Ports
name | outtype | outlen | intype inlen | doc
msr double | 1 measured input signal
des double | 1 desired input signal
out double | 1 controller output
44 Chapter 7. Microblx Module Index

microblx Documentation

7.7 Module saturation_double

7.7.1 Block ubx/saturation_double

Type: cblock
Attributes:

Meta-data: double saturation block

License: BSD-3-Clause

Configs

Ports

name

type doc

data_len long data array length

lower_limits | double | saturation lower limits

upper_limits | double | saturation upper limits

name | outtype | outlen | intype inlen | doc
in double | 1 input signal to saturate
out double | 1 saturated output signal

7.8 Module luablock

7.8.1 Block ubx/luablock

Type: cblock
Attributes:

Meta-data: { doc="A generic luajit based block’, realtime=false, }

License: BSD-3-Clause

Configs

Ports

name type | doc

lua_file | char

lua_str char

loglevel | int
name outtype | outlen | intype | inlen | doc
exec_str | int 1 char 1

7.7. Module saturation_double

45

microblx Documentation

7.9 Module cconst

7.9.1 Block ubx/cconst

Type: cblock

Attributes:

Meta-data: { doc="const value c-block’, realtime=true }
License: BSD-3-Clause

Configs
name type | doc
type_name | char | ubx type name of the value to output
data_len long | data length of the value to output

7.10 Module iconst

7.10.1 Block ubx/iconst

Type: iblock

Attributes:

Meta-data: { doc="const value i-block’, realtime=true }
License: BSD-3-Clause

Configs
name type | doc
type_name | char | ubx type name of the value to output
data_len long | data length of the value to output

7.11 Module Ifds_cyclic

7.11.1 Block ubx/Ifds_cyclic

Type: iblock
Attributes:

Meta-data: { doc="High performance scalable, lock-free cyclic, buffered in process communication description=[[
This version is stongly typed and should be preferred This microblx iblock is based on based on liblfds ringbuffer
(v0.6.1.1) (www.liblfds.org)]], version=0.01, hard_real_time=true, }

License: BSD-3-Clause

46 Chapter 7. Microblx Module Index

microblx Documentation

Configs
name type doc
type_name char name of registered microblx type to transport
data_len uint32_t | array length (multiplier) of data (default: 1)
buffer_len uint32_t | max number of data elements the buffer shall hold
allow_partial int allow msgs with len<data_len. def: O (no)
loglevel_overruns | int loglevel for reporting overflows (default: NOTICE, -1 to disable)
Ports
name out type out in in doc
len type len
over- unsigned 1 Number of buffer overruns. Value is output only upon
runs long change.

7.12 Module mqueue

7.12.1 Block ubx/mqueue

Type: iblock

Attributes:

Meta-data: { doc="POSIX mqueue interaction’, realtime=true, }
License: BSD-3-Clause

Configs

name type doc

mq_id char mqueue base id

type_name | char name of registered microblx type to transport
data_len long array length (multiplier) of data (default: 1)
buffer_len long max number of data elements the buffer shall hold
blocking uint32_t | enable blocking mode (def: 0)

unlink uint32_t | call mg_unlink in cleanup (def: 1 (yes)

7.13 Module hexdump

7.13.1 Block ubx/hexdump

Type: iblock
Attributes:

Meta-data: { doc="hexdump interaction’, realtime=false, }
License: BSD-3-Clause

7.12. Module mqueue

47

microblx Documentation

48 Chapter 7. Microblx Module Index

CHAPTER 8

Indices and tables

* genindex
* modindex

e search

49

	Installing
	Building from source
	Using yocto

	Getting started
	Microblx in a nutshell
	Run the threshold example
	Run the PID controller block
	Important concepts

	Developing microblx blocks
	Overview
	Declaring configuration
	Declaring ports
	Declaring block meta-data
	Declaring/implementing block hook functions
	Declaring the block
	Declaring types
	Block and type registration
	Real-time logging
	SPDX License Identifiers
	Generating blocks with ubx_genblock
	Block Interface Guidelines

	Composing microblx systems
	Microblx System Composition DSL (usc files)
	Hierarchical compositions
	Model mixins
	Alternatives

	Tutorial: close loop control of a robotic platform
	Goal
	Introductory steps
	Code of the blocks
	Deployment via the usc (microblx system composition) file
	Deployment via C program
	The program
	Next steps

	Frequently asked questions
	Developing blocks
	Running microblx
	Debugging
	meta-microblx

	Microblx Module Index
	Module trig
	Module ptrig
	Module math_double
	Module rand_double
	Module ramp_double
	Module pid
	Module saturation_double
	Module luablock
	Module cconst
	Module iconst
	Module lfds_cyclic
	Module mqueue
	Module hexdump

	Indices and tables

